Realization of affine type A Kirillov-Reshetikhin crystals via polytopes
نویسنده
چکیده
On the polytope defined in [FFL11], associated to any rectangle highest weight, we define a structure of an type An-crystal. We show, by using the Stembridge axioms, that this crystal is isomorphic to the one obtained from Kashiwara’s crystal bases theory. Further we define on this polytope a bijective map and show that this map satisfies the properties of a weak promotion operator. This implies in particular that we provide an explicit realization of Kirillov-Reshetikhin crystals for the affine type A (1) n via polytopes.
منابع مشابه
Affine structures and a tableau model for E6 crystals
We provide the unique affine crystal structure for type E 6 Kirillov–Reshetikhin crystals corresponding to the multiples of fundamental weights sΛ1, sΛ2, and sΛ6 for all s ≥ 1 (in Bourbaki’s labeling of the Dynkin nodes, where 2 is the adjoint node). Our methods introduce a generalized tableaux model for classical highest weight crystals of type E and use the order three automorphism of the aff...
متن کاملDemazure crystals and the energy function
There is a close connection between Demazure crystals and tensor products of Kirillov–Reshetikhin crystals. For example, certain Demazure crystals are isomorphic as classical crystals to tensor products of Kirillov– Reshetikhin crystals via a canonically chosen isomorphism. Here we show that this isomorphism intertwines the natural affine grading on Demazure crystals with a combinatorially defi...
متن کاملA Uniform Realization of the Combinatorial R-matrix
Kirillov-Reshetikhin crystals are colored directed graphs encoding the structure of certain finite-dimensional representations of affine Lie algebras. A tensor products of column shape Kirillov-Reshetikhin crystals has recently been realized in a uniform way, for all untwisted affine types, in terms of the quantum alcove model. We enhance this model by using it to give a uniform realization of ...
متن کاملDemazure Crystals, Kirillov-Reshetikhin Crystals, and the Energy Function
It has previously been shown that, at least for non-exceptional Kac–Moody Lie algebras, there is a close connection between Demazure crystals and tensor products of Kirillov–Reshetikhin crystals. In particular, certain Demazure crystals are isomorphic as classical crystals to tensor products of Kirillov–Reshetikhin crystals via a canonically chosen isomorphism. Here we show that this isomorphis...
متن کاملCrystal Structure on Rigged Configurations and the Filling Map
In this paper, we extend work of the first author on a crystal structure on rigged configurations of simply-laced type to all non-exceptional affine types using the technology of virtual rigged configurations and crystals. Under the bijection between rigged configurations and tensor products of Kirillov–Reshetikhin crystals specialized to a single tensor factor, we obtain a new tableaux model f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 120 شماره
صفحات -
تاریخ انتشار 2013